Card | Table | RUSMARC | |
Кузнецов, Сергей Александрович. Определение критериев снижения погрешности полустатических методов определения поверхностного натяжения жидкостей на примере методов отрыва кольца и втягивания пластины: выпускная квалификационная работа по программе магистратуры. Направление подготовки 03.04.01: "Прикладные математика и физика". Направленность (профиль): "Цифровые модели нефтегазовых месторождений" / С.А. Кузнецов; Уфимский университет науки и технологий, Физико-технический институт, Кафедра прикладной физики ; научный руководитель А. А. Мусин. — Уфа, 2024. — 44 с. — <URL:https://elib.bashedu.ru/dl/diplom/2024/Kuznecov_SA_03_04_01_PF_mag_2024.pdf>. — Текст: электронныйRecord create date: 1/24/2025 Subject: ВКР; магистратура; поверхностное натяжение ; снижения погрешности ; измерения поверхностного тензиометра ; уравнение Навье-Стокса Collections: Магистерские диссертации; Общая коллекция Allowed Actions: –
*^% Action 'Read' will be available if you login and work on the computer in the reading rooms of the Library
Group: Anonymous Network: Internet |
Document access rights
Network | User group | Action | ||||
---|---|---|---|---|---|---|
Library BashGU Local Network | Authenticated users | |||||
Library BashGU Local Network | All | |||||
Internet | Authenticated users | |||||
Internet | All |
Table of Contents
- СПИСОК ЛИТЕРАТУРЫ
- 1. Maxwell J. C. Capillary action //Encyclopaedia Britannica. – 1875. – Т. 5. – С. 256-275.
- 2. Pomeau Y. Surface tension: from fundamental principles to applications in liquids and in solids : дис. – Warsaw School of Statistical Physics, 2013.
- 3. Fyfe D. E., Oran E. S., Fritts M. J. Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh //Journal of Computational Physics. – 1988. – Т. 76. – №. 2. – С. 349-384.
- 4. Harlow F. H. et al. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface //Physics of fluids. – 1965. – Т. 8. – №. 12. – С. 2182.
- 5. Peskin C. S. Flow patterns around heart valves: a numerical method //Journal of computational physics. – 1972. – Т. 10. – №. 2. – С. 252-271.
- 6. Unverdi S. O., Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows //Journal of computational physics. – 1992. – Т. 100. – №. 1. – С. 25-37.
- 7. Popinet S., Zaleski S. A front‐tracking algorithm for accurate representation of surface tension //International Journal for Numerical Methods in Fluids. – 1999. – Т. 30. – №. 6. – С. 775-793.
- 8. Scardovelli R., Zaleski S. Direct numerical simulation of free-surface and interfacial flow //Annual review of fluid mechanics. – 1999. – Т. 31. – №. 1. – С. 567-603.
- 9. Sussman M., Smereka P., Osher S. A level set approach for computing solutions to incompressible two-phase flow //Journal of Computational physics. – 1994. – Т. 114. – №. 1. – С. 146-159.
- 10. Anderson D. M., McFadden G. B., Wheeler A. A. Diffuse-interface methods in fluid mechanics //Annual review of fluid mechanics. – 1998. – Т. 30. – №. 1. – С. 139-165.
- 11. Gueyffier D. et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows //Journal of Computational physics. – 1999. – Т. 152. – №. 2. – С. 423-456.
- 12. Desjardins O., Moureau V., Pitsch H. An accurate conservative level set/ghost fluid method for simulating turbulent atomization //Journal of computational physics. – 2008. – Т. 227. – №. 18. – С. 8395-8416.
- 13. Sussman M., Puckett E. G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows //Journal of computational physics. – 2000. – Т. 162. – №. 2. – С. 301-337.
- 14. Young T. III. An essay on the cohesion of fluids //Philosophical transactions of the royal society of London. – 1805. – №. 95. – С. 65-87.
- 15. Gueyffier D. et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows //Journal of Computational physics. – 1999. – Т. 152. – №. 2. – С. 423-456.
- 16. Brackbill J. U., Kothe D. B., Zemach C. A continuum method for modeling surface tension //Journal of computational physics. – 1992. – Т. 100. – №. 2. – С. 335-354.
- 17. Engquist B., Tornberg A. K., Tsai R. Discretization of Dirac delta functions in level set methods //Journal of Computational Physics. – 2005. – Т. 207. – №. 1. – С. 28-51.
- 18. Fedkiw R. P. et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method) //Journal of computational physics. – 1999. – Т. 152. – №. 2. – С. 457-492.
- 19. LeVeque R. J., Li Z. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources //SIAM Journal on Numerical Analysis. – 1994. – Т. 31. – №. 4. – С. 1019-1044.
- 20. Popinet S. 2018. Annu. Rev. Fluid Mech. C. 49-75.
- 21. Williams M. W., Kothe D. B., Puckett E. G. Accuracy and convergence of continuum surface tension models //Fluid dynamics at interfaces. – 1998. – С. 294-305.
- 22. Francois M. M. et al. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework //Journal of Computational Physics. – 2006. – Т. 213. – №. 1. – С. 141-173.
- 23. Cummins S. J., Francois M. M., Kothe D. B. Estimating curvature from volume fractions //Computers & structures. – 2005. – Т. 83. – №. 6-7. – С. 425-434.
- 24. Abadie T., Aubin J., Legendre D. On the combined effects of surface tension force calculation and interface advection on spurious currents within volume of fluid and level set frameworks //Journal of Computational Physics. – 2015. – Т. 297. – С. ...
- 25. Fyfe D. E., Oran E. S., Fritts M. J. Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh //Journal of Computational Physics. – 1988. – Т. 76. – №. 2. – С. 349-384.
- 26. Prosperetti A. On the motion of two superposed viscous fluids. – 1981.
- 27. Hysing S. et al. Quantitative benchmark computations of two‐dimensional bubble dynamics //International Journal for Numerical Methods in Fluids. – 2009. – Т. 60. – №. 11. – С. 1259-1288.
- 28. Thoraval M. J. et al. Drop impact entrapment of bubble rings //Journal of Fluid Mechanics. – 2013. – Т. 724. – С. 234-258.
- 29. Cano-Lozano J. C. et al. Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability //Physical Review Fluids. – 2016. – Т. 1. – №. 5. – С. 053604.
- 30. Dowling D. R., Schultz W. W., Lapham G. S. In situ force-balance tensiometry. – 1999.
Usage statistics
Access count: 0
Last 30 days: 0 Detailed usage statistics |